

# *NAMIBIA UNIVERSITY*

OF SCIENCE AND TECHNOLOGY

# FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

### **DEPARTMENT OF MATHEMATICS AND STATISTICS**

| QUALIFICATION: BACHELOR OF ECONOMICS |                                            |  |
|--------------------------------------|--------------------------------------------|--|
| QUALIFICATION CODE: 07BECO           | LEVEL: 5                                   |  |
| COURSE CODE: MFE511S                 | COURSE NAME: MATHEMATICS FOR ECONOMISTS 1A |  |
| SESSION: JULY 2022 PAPER: THEORY     |                                            |  |
| DURATION: 3 HOURS                    | MARKS: 100                                 |  |

| SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER |                                                     |
|-------------------------------------------------------------|-----------------------------------------------------|
| EXAMINER                                                    | MR G. S. MBOKOMA, MR F.N. NDINODIVA, MRS A. SAKARIA |
| MODERATOR:                                                  | MR I.D.O NDADI                                      |

| INSTRUCTIONS |                                                                                    |  |
|--------------|------------------------------------------------------------------------------------|--|
| 1.           | Answer <b>ALL</b> the questions in the booklet provided.                           |  |
| 2.           | Show clearly all the steps used in the calculations.                               |  |
| 3.           | All written work must be done in <b>blue</b> or <b>black</b> ink and sketches must |  |
|              | be done in pencil.                                                                 |  |
| 4.           | Decimal answers must be rounded to 4 decimals places                               |  |

### **PERMISSIBLE MATERIALS**

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page)

#### QUESTION 1 (25 marks)

1.1 For each of the following statements, indicate whether True (T) or False (F)

1.1.1 
$$\sqrt{\sqrt{(x-2)}} = |(x-2)|$$
 [1]

1.1.2 
$$\log_b \left( \frac{x}{b} \right) = \log_b x - 1$$
 [1]

1.1.3 
$$\lim_{\delta \to 0} 5 = 5$$
 [1]

1.1.4 If 
$$a^2 + b^2 = 1$$
 and  $x^2 + y^2 = 2$ , then  $(ax + by)^2 + (ay - bx)^2 = 2$  [1]

1.1.5 
$$Q = 0.001K^{0.23}L^{0.76}$$
 is a strict Cobb-Douglas production function [1]

1.2 Determine the degree of the polynomial.

$$(9x^2y^3z)^2 - \frac{6x^2y}{(y^{-3}z^{-2})^3} + 11x^4yz^6 + (4xy^2z)^3$$
 [3]

1.3 Simplify the expression 
$$\frac{\left(a+b\right)^2-c^2}{a^2+ab+ac+bc} \times \frac{a^2+ab-ac-bc}{a+b+c} \div \frac{2a^2-ac-c^2}{a^2-c^2}$$
 [5]

1.4 Solve the following indicial equation in 
$$x : \left[ \left( \frac{1}{20} \right)^{2+x} \times \left( \frac{1}{20} \right)^{8x} \right]^2 = 1$$
 [4]

1.5 Evaluate 
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
 [3]

1. 6 Use first principle of differentiation to evaluate 
$$\frac{dy}{dx}$$
 if  $y = x^{-1}$  [5]

#### QUESTION 2 (30 marks)

2.1 Assume an income tax T with a proportional component t incorporated into an income determination model Y = C + I,

$$C = C_0 + bY_m$$
,  $T = T_0 + tY$ ,  $Y_m = Y - T$ ,  $I = I_0$ 

where 
$$C_0 = 42$$
,  $I_0 = 15$ ,  $T_0 = 10$ ,  $b = 0.375$  and  $t = 0.2$ 

2.1.1 Determine the reduced form of this model

[5]

2.2 Given that  $Q_s=-5+3p$  and  $Q_d=10-2p$ , determine the equilibrium price and quantity [5]

2.3 The Investment-Savings (IS) and Liquidity Preference – Money Supply (LM) models of a certain **3-sector** economy, Y = C + I + G, economy compose the following:

Derive the IS and LM equations and hence determine the equilibrium levels of income and rate of interest, where P=2. [8]

- 2.4 A firm uses labour (L) and machines (K) to manufacture their products. The cost of labour is N\$ 40 per unit and the cost of using a machine is N\$ 10.
  - 2.4.1 Derive the budget line of the firm. [2]
  - 2.4.2 Sketch a budget line for this firm, showing the combinations of (L,K) with total cost of N\$ 400, label the budget line with  $(C_1)$ . [3]
  - 2.4.3 On the same graph, sketch another budget line with total cost of N\$ 200, label it with  $(C_2)$  [3]
  - 2.4.4 Discuss your observations between the two-budget lines. [2]

#### QUESTION 3 (25 marks)

3.1 A firm 's short-run production function is given by  $Q = Le^{-0.02L}$ .

- 3.1.2 At L = 50, determine whether the firm's maximes its production level? [3]
- 3.1.3 What will be the production output at L = 50? [3]
- 3.2 Given the production

$$Q=K^2+2L^2$$
 3.2.1 Determine the marginal products of  $\frac{\partial Q}{\partial K}$  and  $\frac{\partial Q}{\partial L}$  [4]

3.2.2 Show that 
$$MRTS = \frac{2L}{\kappa}$$
 and  $K \frac{\partial Q}{\partial \kappa} + L \frac{\partial Q}{\partial L} = 2Q$  [5]

3.3 Determine 
$$\frac{dy}{dx}$$
, if  $2x^3 - 3y^2 + 7xy = 0$  [5]

## QUESTION 4 (20 marks)

4.1 Determine the following integrals:  $4.1.1 \quad \int \sqrt{t} \ dt \qquad [3]$   $4.1.2 \quad \int_0^5 e^{-2x} \ dx \qquad [5]$ 4.2 Assume that the rate of an investment is given by the function  $I(t) = 6\sqrt{t}$ . Compute the total capital accumulation (K) between the 1<sup>st</sup> and 5<sup>th</sup> years? [Hint:  $K = \int I(t) dt$ ] [6]
4.3 The marginal revenue of a company is given  $MR = 100 + 20x + 3x^2$ , where x is an amount of good in units sold for a period. Find the total revenue function at (x = 2) when total revenue is equal to 260? [6]